CHAPTER 22 METRICS FOR PROCESS AND PROJECTS 651

W Product

Determinants
for software
quality and
organizational
effectiveness
(adapted from .
[PAU94]) Customer Business
characteristics conditions
People Development Technology
environment
In addition, the process triangle exists within a circle of environmental conditions
that include the development environment (e.g., CASE tools), business conditions
(e.g., deadlines, business rules), and customer characteristics (e.g., ease of commu-
nication and collaboration).
% We measure the efficacy of a software process indirectly. That is, we derive a set
POINT of metrics based on the outcomes that can be derived from the process. Outcomes
The skl and include measures of errors uncovered before release of the software, defects deliv-
e skill on . .
mofivation of the ered to and reported by end-users, work products delivered (productivity), human ef-

softwore people doing ~ fort expended, calendar time expended, schedule conformance, and other measures.
the work are the most ~ Wee also derive process metrics by measuring the characteristics of specific software

important factors thot engineering tasks. For example, we might measure the effort and time spent per-
influence software o
) forming the generic software engineering activities described in Chapter 2.
quality.
h cs let you know when 1o laugh and when to cry.”
& What is the Grady [GRA92] argues that there are “private and public” uses for different types
difference of process data. Because it is natural that individual software engineers might be
between private sensitive to the use of metrics collected on an individual basis, these data should be
;"'d t';:’:':u‘r':“ private to the individual and serve as an indicator for the individual only. Examples
or s . o s
metrics? of private metrics include defect rates by individual, defect rates by software compo-

nent, and errors found during development.
The “private process data” philosophy conforms well with the personal software
process approach (Chapter 2) proposed by Humphrey [HUM95]. Humphrey recognizes

652

What

guidelines
should be applied
when we collect
software metrics?

PART FOUR MANAGING SOFTWARE PROJECTS

that software process improvement can and should begin at the individual level. Pri-
vate process data can serve as an important driver as the individual software engineer
works to improve.

Some process metrics are private to the software project team but public to all
team members. Examples include defects reported for major software functions
(that have been developed by a number of practitioners), errors found during formal
technical reviews, and lines of code or function points per component or function.'
These data are reviewed by the team to uncover indicators that can improve team
performance.

Public metrics generally assimilate information that originally was private to in-
dividuals and teams. Project level defect rates (absolutely not attributed to an indi-
vidual), effort, calendar times, and related data are collected and evaluated in an
attempt to uncover indicators that can improve organizational process performance.

Software process metrics can provide significant benefit as an organization works
to improve its overall level of process maturity. However, like all metrics, these can
be misused, creating more problems than they solve. Grady [GRA92] suggests a
“software metrics etiquette” that is appropriate for both managers and practitioners
as they institute a process metrics program:

e Use common sense and organizational sensitivity when interpreting
metrics data.

o Provide regular feedback to the individuals and teams who collect measures
and metrics.

e Don't use metrics to appraise individuals.

e Work with practitioners and teams to set clear goals and metrics that will be
used to achieve them.

e Never use metrics to threaten individuals or teams.

e Metrics data that indicate a problem area should not be considered
“negative.” These data are merely an indicator for process improvement.

e Don't obsess on a single metric to the exclusion of other important metrics.

As an organization becomes more comfortable with the collection and use of
process metrics, the derivation of simple indicators gives way to a more rigorous ap-
proach called statistical software process improvement (SSPI). In essence, SSPI uses
software failure analysis to collect information about all errors and defects” encoun-
tered as an application, system, or product is developed and used.

1 Lines of code and function point metrics are discussed in Sections 22.2.1 and 22.2.2.

2 In this book, an error is defined as some flaw in a software engineering work product that is un-
covered before the software is delivered to the end-user. A defect is a flaw that is uncovered after
delivery to the end-user. It should be noted that others do not make this distinction. Further dis-
cussion is presented in Chapter 26.

. How should
we use
metrics during the
project itself?

SAFEHOME

CHAPTER 22 METRICS FOR PROCESS AND PROJECTS 653

22.1.2 Project Metrics

Unlike software process metrics that are used for strategic purposes, software proj-
ect metrics are tactical. That is, project metrics and the indicators derived from them
are used by a project manager and a software team to adapt project workflow and
technical activities.

The first application of project metrics on most software projects occurs during
estimation. Metrics collected from past projects are used as a basis from which ef-
fort and time estimates are made for current software work. As a project proceeds,
measures of effort and calendar time expended are compared to original estimates
(and the project schedule). The project manager uses these data to monitor and con-
trol progress.

As technical work commences, other project metrics begin to have significance.
Production rates represented in terms of models created, review hours, function
points, and delivered source lines are measured. In addition, errors uncovered dur-
ing each software engineering task are tracked. As the software evolves from re-
quirements into design, technical metrics (Chapter 15) are collected to assess design
quality and to provide indicators that will influence the approach taken to code gen-
eration and testing.

The intent of project metrics is twofold. First, these metrics are used to minimize
the development schedule by making the adjustments necessary to avoid delays and
mitigate potential problems and risks. Second, project metrics are used to assess
product quality on an ongoing basis and, when necessary, modify the technical ap-
proach to improve quality.

As quality improves, defects are minimized, and as the defect count goes down,
the amount of rework required during the project is also reduced. This leads to a re-
duction in overall project cost.

a Metrics Approach

654

Cova$

Because many factors
affect software work,
don’t use metrics to
compare individuals or
teams.

PART FOUR MANAGING SOFTWARE PROJECTS

Jamie: True . . . but, | don't k

necessary.

fime pressure, Doug. I'm not in
wmp e the fime to do Doug: Here are some W :

geﬁmg up to speed

work involves
the results to

any time.

Doug: Time you spendiedming ver v
do it ond then we || establish some gaqk

In Chapter 15, we noted that software measurement can be categorized in two ways:
(1) direct measures of the software process (e.g., cost and effort applied) and product
(e.g., lines of code (LOC) produced, execution speed, and defects reported over some
set period of time), and (2) indirect measures of the product that include functional-
ity, quality, complexity, efficiency, reliability, maintainability, and many other “-abilities”
discussed in Chapter 15.

ing that can be counted counts, and not everything that counts can be counted.”

Albm&mi‘n; |

Project metrics can be consolidated to create process metrics that are public to
the software organization as a whole. But how does an organization combine met-
rics that come from different individuals or projects?

To illustrate, we consider a simple example. Individuals on two different project
teams record and categorize all errors that they find during the software process.
Individual measures are then combined to develop team measures. Team A found
342 errors during the software process prior to release. Team B found 184 errors.
All other things being equal, which team is more effective in uncovering errors
throughout the process? Because we do not know the size or complexity of the
projects, we cannot answer this question. However, if the measures are normal-
ized, it is possible to create software metrics that enable comparison to broader or-
ganizational averages. Both size- and function-oriented metrics are normalized in
this manner.

N
e,
POINT
Size-oriented metrics
are widely used, but
debate about their
validity and
applicability confinues.

CHAPTER 22 METRICS FOR PROCESS AND PROJECTS 655

22.2.1 Size-Oriented Metrics

Size-oriented software metrics are derived by normalizing quality and/or productiv-
ity measures by considering the size of the software that has been produced. If a soft-
ware organization maintains simple records, a table of size-oriented measures, such
as the one shown in Figure 22.2, can be created. The table lists each software de-
velopment project that has been completed over the past few years and correspon-
ding measures for that project. Referring to the table entry (Figure 22.2) for project
alpha: 12,100 lines of code were developed with 24 person-months of effort at a cost
of $168,000. 1t should be noted that the effort and cost recorded in the table repre-
sent all software engineering activities (analysis, design, code, and test), not just
coding. Further information for project alpha indicates that 365 pages of documen-
tation were developed, 134 errors were recorded before the software was released,
and 29 defects were encountered after release to the customer within the first year
of operation. Three people worked on the development of software for project alpha.

To develop metrics that can be assimilated with similar metrics from other proj-
ects, we choose lines of code as our normalization value. From the rudimentary data
contained in the table, a set of simple size-oriented metrics can be developed for each
project: errors per KLOC (thousand lines of code), defects per KLOC, $ per KLOC,
pages of documentation per KLOC. In addition, other interesting metrics can be com-
puted: errors per person-month, KLOC per person-month, $ per page of documentation.

Size-oriented metrics are not universally accepted as the best way to measure the
software process [JON86]. Most of the controversy swirls around the use of lines of
code as a key measure. Proponents of the LOC measure claim that LOC is an “arti-
fact” of all software development projects that can be easily counted, that many ex-
isting software estimation models use LOC or KLOC as a key input, and that a large
body of literature and data predicated on LOC already exists. On the other hand,

Size-oriented
metrics

—

dpha {12,000 | 24 | 168 | 365
beta | 27200 | 62 | 440
| 20:200 1314

656

PART FOUR MANAGING SOFTWARE PROJECTS

opponents argue that LOC measures are programming language dependent, that
when productivity is considered, they penalize well-designed but shoster programs,
that they cannot easily accommodate nonprocedural languages, and that their use
in estimation requires a level of detail that may be difficult to achieve (i.e., the plan-
ner must estimate the LOC to be produced long before analysis and design have been
completed).

22.2.2 Function-Oriented Metrics

Function-oriented software metrics use a measure of the functionality delivered by
the application as a normalization value. The most widely used function-oriented
metric is the function point (FP). Computation of the function point is based on char-
acteristics of the software’s information domain and complexity. The mechanics of
FP computation has been discussed in Chapter 15.°

The function point, like the LOC measure, is controversial. Proponents claim
that FP is programming language independent, making it ideal for applications us-
ing conventional and nonprocedural languages, and that it is based on data that
are more likely to be known early in the evolution of a project, making FP more
attractive as an estimation approach. Opponents claim that the method requires
some “sleight of hand” in that computation is based on subjective rather than ob-
jective data, that counts of the information domain (and other dimensions) can be
difficult to collect after the fact, and that FP has no direct physical meaning—it's
just a number.

22.2.3 Reconciling LOC and FP Metrics

The relationship between lines of code and function points depends upon the pro-
gramming language that is used to implement the software and the quality of the de-
sign. A number of studies have attempted to relate FP and LOC measures. To quote
Albrecht and Gaffney [ALB83]:

The thesis of this work is that the amount of function to be provided by the application
(program) can be estimated from the itemization of the major components* of data to be
used or provided by it. Furthermore, this estimate of function should be correlated to both
the amount of LOC to be developed and the development effort needed.

The following table® [QSMO02] provides rough estimates of the average number of
lines of code required to build one function point in various programming languages:

3 See Section 15.3.1 for a detailed discussion of FP computation.

4 It is important to note that “the itemization of major components” can be interpreted in a variety of
ways. Software engineers who work in an object-oriented development environment use the num-
ber of classes or objects as the dominant size metric. A maintenance organization might view proj-
ect size in terms of the number of engineering change orders (Chapter 27). An information systems
organization might view the number of business processes affected by an application.

5 Used with permission of Quantitative Software Management (www .gsm.com), copyright 2002.

CHAPTER 22 METRICS FCR PROCESS AND PROJECTS 657

e R e e v D T N A B TR T T T R T I W T R M R T BT LR e e ST B e S I
Programming
Language LOC per Function point
SRR NS R R R Bs B e A R R R R e s RS T et e AR TR SRR g P e T
Avg. Median Low High
Access 35 38 15 47
Ada 154 — 104 205
APS 86 83 20 184
ASP 69 62 - 32 127
Assembler 337 315 Q1 694
C 162 109 33 704
C++ 66 53 29 178
Clipper 38 39 27 70
COBOL 77 77 14 400
Cocl:Gen/IEF 38 1 10 180
Culprit 51 — — —
DBase iV 52 — — —
Easytrieve+ 33 34 25 4]
Exceld7 46 — 31 63
Focus 43 42 32 56
FORTRAN — — — —
FoxPro 32 35 25 35
Ideal 66 52 3 203
IEF /Cool:Gen 38 31 10 180
Informix 42 31 24 57
Java 63 53 77 —-
JavaScript 58 63 42 75
icL Q1 123 26 150
NG 59 — — —
Lotus Notes 21 22 15 25
Mantis 71 27 22 250
Mapper 118 81 16 245
Natural 60 52 22 141
Oracle 30 35 4 217
PeopleSoft 33 32 30 40
Perl 60 — — —
PL/1 78 67 22 263
Powerbuilder 32 31 I 105
REXX 67 — — -
RPG 11/111 61 49 24 155
SAS 40 4] . 33 409
Smalltaik 26 19 . 10 55
SQL 40 37 7 110
VBScript36 34 27 50 —
Visual Basic 47 42 16 158

O PR R) T T P e TSR e R SR e R T e e

A review of these data indicates that one LOC of C+ + provides approximately 2.4 times
the “functionality” (on average) as one LOC of C. Furthermore, one LOC of a Smalltalk
provides at least four times the functionality of a LOC for a conventional programming
language such as Ada, COBOL, or C. Using the information contained in the table, it is
possible to “backfire” [JON98] existing software to estimate the number of function
points, once the total number of programming language statements are known.

658

GDVICE‘

It is not uncommon for
multiple scenario
scripts to mention the
same functionality or
dota objecs.

Therefore, be careful
when using script
counts.

ﬁnwcs‘

Classes can vary in
size and complexity.
Therefore, it's worth
considering classifying
closs counts by size
and complexity.

PART FOUR MANAGING SOFTWARE PROJECTS

Function points and LOC-based metrics have been found to be relatively accurate
predictors of software development effort and cost. However, to use LOC and FP for
estimation (Chapter 23), a historical baseline of information must be established.

Within the context of process and project metrics, we are concerned primarily
with productivity and quality—measures of software development “output” as a
function of effort and time applied and measures of the “fitness for use” of the work
products that are produced. For process improvement and project planning pur-
poses, our interest is historical. What was software development productivity on past
projects? What was the quality of the software that was produced? How can past pro-
ductivity and quality data be extrapolated to the present? How can it help us improve
the process and plan new projects more accurately?

22.2.4 Object-Oriented Metrics

Conventional software project metrics (LOC or FP) can be used to estimate object-
oriented software projects. However, these metrics do not provide enough granular-
ity for the schedule and effort adjustments that are required as we iterate through an
evolutionary or incremental process. Lorenz and Kidd [LOR94] suggest the following
set of metrics for OO projects:

Number of scenario scripts. A scenario script (analogous to use-cases dis-
cussed throughout Parts 2 and 3 of this book) is a detailed sequence of steps that de-
scribes the interaction between the user and the application. The number of scenario
scripts is directly correlated to the size of the application and to the number of test
cases that must be developed to exercise the system once it is constructed.

Number of key classes. Key classes are the “highly independent components”
[LOR94] that are defined early in object-oriented analysis (Chapter 8).° Because key
classes are central to the problem domain, the number of such classes is an indica-
tion of the amount of effort required to develop the software and also an indication
of the potential amount of reuse to be applied during system development.

Number of support classes. Support classes are required to implement the system
but are not immediately related to the problem domain. Examples might be Ul classes,
database access and manipulation classes, and computation classes. In addition, sup-
port classes can be developed for each of the key classes. The number of support
classes is an indication of the amount of effort required to develop the software and an
indication of the potential amount of reuse to be applied during system development.

Average number of support classes per key class. In general, key classes are
known early in the project. Support classes are defined throughout. If the average
number of support classes per key class were known for a given problem domain,
estimating (based on total number of classes) would be much simplified. Lorenz and

6 Key classes were referred to as analysis classes in Part 2 of this book.

CHAPTER 22 METRICS FOR PROCESS AND PROJECTS 659

Kidd suggest that applications with a GUI have between two and three times the
number of support classes as key classes. Non-GUI applications have between one
and two times the number of support classes as key classes.

Number of subsystems. A subsystem is an aggregation of classes that support a
function that is visible to the end-user of a system. Once subsystems are identified,
itis easier to lay out a reasonable schedule in which work on subsystems is partitioned
among project staff.

To be used effectively in an object-oriented software engineering environment,
metrics similar to those noted above must be collected along with project measures
such as effort expended, errors and defects uncovered, and models or documenta-
tion pages produced. As the database grows (after a number of projects have been
completed), relationships between object-oriented measures and project measures
will provide metrics that can aid in project estimation.

22.2.5 Use-Case Oriented Metrics

It would seem reasonable to apply the use-case’ as a normalization measure simi-
lar to LOC or FP. Like FP, the use-case is defined early in the software process, al-
lowing it to be used for estimation before significant modeling and construction
activities are initiated. Use-cases describe (indirectly, at least) user-visiple functions
and features that are basic requirements for a system. The use-case is independent
of programming language. In addition, the number of use-cases is directly propor-
tional to the size of the application in LOC and to the number of test cases that will
have to be designed to fully exercise the application.

Because use-cases can be created at vastly different levels of abstraction, there
is no standard size for a use-case. Without a standard measure of what a use-case
is, its application as a normalization measure (e.g., effort expended per use-case) is
suspect. Although a number of researchers (e.g., [SMI99}), have attempted to derive
use-case metrics, much work remains to be done.

22.2.6 Web Engineering Project Metrics

The objective of all Web engineering projects (Part 3 of this book) is to build a Web
application (WebApp) that delivers a combination of content and functionality to the
end-user. Measures and metrics used for traditional software engineering projects
are difficult to translate directly to WebApps. Yet, a Web engineering organization
should develop a database that allows it to assess its internal productivity and qual-
ity over a number of projects. Among the measures that can be collected are:

Number of static Web pages. Web pages with static content (i.e., the end-user
has no control over the content displayed on the page) are the most common of all
WebApp features. These pages represent low relative complexity and generally

7 Use-cases are discussed throughout Parts 2 and 3 of this book.

PART FOUR MANAGING SOFTWARE PROJECTS

require less effort to construct than dynamic pages. This measure provides an indi-
cation of the overall size of the application and the effort required to develop it.

Number of dynamic Web pages. Web pages with dynamic content (i.e., end-
user actions result in customized content displayed on the page) are essential in all
e-commerce applications, search engines, financial applications, and many other
WebApp categories. These pages represent higher relative complexity and require
more effort to construct than static pages. This measure provides an indication of
the overall size of the application and the effort required to develop it.

Number of internal page links. Internal page links are pointers that provide a
hyperlink to some other Web page within the WebApp. This measure provides an
indication of the degree of architectural coupling within the WebApp. As the num-
ber of page links increases, the effort expended on navigational design and con-
struction also increases.

Number of persistent data objects. One or more persistent data objects
(e.g., a database or data file) may be accessed by a WebApp. As the number of per-
sistent data objects grows, the complexity of the WebApp also grows, and effort to
implement it increases proportionally.

Number of external systems interfaced. WebApps must often interface with
“backroom” business applications. As the requirement for interfacing grows, sys-
tem complexity and development effort also increase.

Number of static content objects. Static content objects encompass static
text-based, graphical, video, animation, and audio information that are incorpo-
rated within the WebApp. Multiple content objects may appear on a single Web
page.

Number of dynamic content objects. Dynamic content objects are gener-
ated based on end-user actions and encompass internally generated text-based,
graphical, video, animation, and audio information that are incorporated within
the WebApp. Multiple content objects may appear on a single Web page.

Number of executable functions. An executable function (e.g., a script or ap-
plet) provides some computational service to the end-user. As the number of exe-
cutable functions increases, modeling and construction effort also increase.

Each of the measures noted above can be determined at a relatively early stage of
the Web engineering process.

For example, we can define a metric that reflects the degree of end-user cus-
tomization that is required for the WebApp and correlate it to the effort expended on
the WebE project and/or the errors uncovered as reviews and testing are conducted.
To accomplish this, we define

N, = number of static Web pages

Ny, = number of dynamic Web pages

CHAPTER 22 METRICS FOR PROCESS AND PROJECTS 661

Then,
Customization index, C = N,/ (Ng, + Nyp)

The value of C ranges from 0 to 1. As C grows larger the level of WebApp cus-
tomization becomes a significant technical issue.

Similar Web application metrics can be computed and correlated with project
measures such as effort expended, errors and defects uncovered, and models or doc-
umentation pages produced. As the database grows (after a number of projects have
been completed), relationships between the WebApp measures and project mea-
sures will provide indicators that can aid in project estimation.

SorTWARE TooLs

PSM Insight, developed by Practical Software and Systems
Measurement (www.psmsc.com), assists in the creation
and subsequent analysis of a project measurement
database.

SLIM tool set, developed by QSM (www.qsm.com),

Project and Process Metrics

Obijective: To assist in the definition,

.
collection, evaluation, and reporting of

soffware measures and melrics.

Mechanics: Each tool varies in its application, but all
provide mechanisms for collecting and evaluating data

that lead to the computation of software metrics.

Representative Tools®

Function Point WORKBENCH, developed by Charismatek
{www.charismatek.com.au), offers a wide array of FP-
oriented mefrics.

MefricCenter, developed by Distributive Software
{(www.distributive.com), supports automated data
collection, analysis, chart formah‘ing, report

\generaﬁon, and other measurement tasks.

provides a comprehensive set of metrics and estimation
tools.

SPR tool set, developed by Software Productivity Research
{(www.spr.com), offers a comprehensive collection of
FP-oriented tools.

TychoMetrics, developed by Predicate Logic, Inc.
(www.predicate.com), is a tool suite for management
metrics collection and reporting.

The overriding goal of software engineering is to produce a high-quality system, ap-
plication, or product within a timeframe that satisfies a market need. To achieve this
goal, software engineers must apply effective methods coupled with modern tools
within the context of a mature software process. In addition, a good software engi-
neer (and good software engineering managers) must measure if high quality is to
be realized.

Private metrics collected by individual software engineers are assimilated to
provide project-level results. Although many quality measures can be collected, the

8 Tools noted here do not represent an endorsement, but rather a sampling of tools in this category.
In most cases, tool names are trademarked by their respective developers.

662

An exceflent source
of informafion on
software quality and
telated topics
(including mekrics)
can b found ot
www.quakity
world.com

PART FOUR MANAGING SOFTWARE PROJECTS

primary thrust at the project level is to measure errors and defects. Metrics derived
from these measures provide an indication of the effectiveness of individual and
group software quality assurance and control activities.

Metrics such as work product (e.g., requirements or design) errors per function
point, errors uncovered per review hour, and errors uncovered per testing hour pro-
vide insight into the efficacy of each of the activities implied by the metric. Error data
can also be used to compute the defect removal efficiency (DRE) for each process
framework activity. DRE is discussed in Section 22.3.2.

22.3.1 Measuring Quality

Although there are many measures of software quality,® correctness, maintainabil-
ity, integrity, and usability provide useful indicators for the project team. Gilb [GIL88]
suggests definitions and measures for each.

Correctness. A program must operate correctly or it provides little value to its
users. Correctness is the degree to which the software performs its required function.
The most common measure for correctness is defects per KLOC, where a defect is de-
fined as a verified lack of conformance to requirements. When considering the overali
quality of a software product, defects are those problems reported by a user of the
program after the program has been released for general use. For quality assessment
purposes, defects are counted over a standard period of time, typically one year.

Maintainability. Software maintenance accounts for more effort than any other
software engineering activity. Maintainability is the ease with which a program can
be corrected if an error is encountered, adapted if its environment changes, or en-
hanced if the customer desires a change in requirements. There is no way to mea-
sure maintainability directly; therefore, we must use indirect measures. A simple
time-oriented metric is mean-time-to-change (MTTC), the time it takes to analyze
the change request, design an appropriate modification, implement the change,
test it, and distribute the change to all users. On average, programs that are main-
tainable will have a lower MTTC (for equivalent types of changes) than programs
that are not maintainable.

Integrity. Software integrity has become increasingly important in the age of
cyber-terrorists and hackers. This attribute measures a system'’s ability to with-
stand attacks (both accidental and intentional) to its security. Attacks can be made
on all three components of software: programs, data, and documents.

To measure integrity, two additional attributes must be defined: threat and se-
curity. Threat is the probability (which can be estimated or derived from empirical
evidence) that an attack of a specific type will occur within a given time. Security is
the probability (which can be estimated or derived from empirical evidence) that

9 A detailed discussion of the factors that influence software quality and the metrics that can be used
to assess software quality has been presented in Chapter 15.

ancs‘

If DRE is low as you
move through analysis
and design, spend
some fime improving
the way you conduct
formal technicol
feviews.

CHAPTER 22 METRICS FOR PROCESS AND PROJECTS ‘ 663

the attack of a specific type will be repelled. The integrity of a system can then be
defined as:

integrity = 3 [1 - (threat x (1 — security))]

For example, if threat (the probability that an attack will occur) is 0.25 and secu-
rity (the likelihood of repelling an attack) is 0.95, the integrity of the system is 0.99
(very high). If, on the other hand, the threat probability is 0.50 and the likelihood of
repelling an attack is only 0.25, the integrity of the system is 0.63 (unacceptably low).

Usability. If a program is not easy to use, it is often doomed to failure, even if
the functions that it performs are valuable. Usability is an attempt to quantify ease-
of-use and can be measured in terms of characteristics presented in Chapter 12.

The four factors just described are only a sampling of those that have been proposed
as measures for software quality. Chapter 15 considers this topic in additional detail.

22.3.2 Defect Removal Efficiency

A quality metric that provides benefits at both the project and process level is defect
removal efficiency (DRE). In essence, DRE is a measure of the filtering ability of qual-
ity assurance and control activities as they are applied throughout all process frame-
work activities.

When considered for a project as a whole, DRE is defined in the following manner:

DRE =E/(E + D)

where E is the number of errors found before delivery of the software to the end-user,
and D is the number of defects found after delivery.

The ideal value for DRE is 1. That is, no defects are found in the software. Realisti-
cally, D will be greater than 0, but the value of DRE can still approach 1. As E increases
(for a given value of D), the overall value of DRE begins to approach 1. In fact, as E in-
creases, it is likely that the final value of D will decrease (errors are filtered out before
they become defects). If used as a metric that provides an indicator of the filtering abil-
ity of quality control and assurance activities, DRE encourages a software project team
to institute techniques for finding as many errors as possible before delivery.

DRE can also be used within the project to assess a team'’s ability to find errors
before they are passed to the next framework activity or software engineering task.
For example, the requirements analysis task produces an analysis model that can be
reviewed to find and correct errors. Those errors that are not found during the re-
view of the analysis model are passed on to design (where they may or may not be
found). When used in this context, we redefine DRE as

DRE; = E/(E; + Ej,))

where E; is the number of errors found during software engineering activity i and E, ,
is the number of errors found during software engineering activity i + 1 that are
traceable to errors that were not discovered in software engineering activity i.

PART FOUR MANAGING SOFTWARE PROJECTS

A quality objective for a software team (or an individual software engineer) is to
achieve DRE, that approaches 1. That is, errors should be filtered out before they are

passed on to the next activity.

Doeg Miller’s office two
merics.

: .on quality. In fact, our

of errors we pass on

.ﬁqﬁ&f&fyﬁolhenextbon

+he number of defects

Yo zero as possible.

from one framework adivity to Ihsm
to find errors at each step. -

Vinod: I'd also like to collect thenumber ei

spend on reviews.

software engineering task.
Doug: You can compute a review:io

. might be interesfing. T,
Jamie: I'd like to track some use-case datd
the amount of effort required to davafépa
amount of effort requnred 1o build soft

a use-case, and .
Doug (smu!mg) | thought we were
simple.

Vinod: We should, but once you get indo: Qx:smﬁp
stuff, there’s a lot of interesting things to lcdmff o
Doug: | agree, but let's walk before we run,
our goal. Limit data to be collected to ﬁ»!eor
and we're ready to go.

The majority of software developers still do not measure, and sadly, most have little
desire to begin. As we noted earlier in this chapter, the problem is cultural. Attempt-
ing to collect measures where none had been collected in the past often precipitates
resistance. “Why do we need to do this?” asks a harried project manager. “I don't see
the point,” complains an overworked practitioner.

In this section, we consider some arguments for software metrics and present an
approach for instituting a metrics collection program within a software engineering
organization. But before we begin, some words of wisdom are suggested by Grady

and Caswell [GRAS87]:

Some of the things we describe here will sound quite easy. Realistically, though, estab-
lishing a successful company-wide software metrics program is hard work. When we say

% What is

® g metrics
baseline, and
what benefit
does it provide
to a software
engineer?

CHAPTER 22 METRICS FOR PROCESS AND PROJECTS 665

that you must wait at least three years before broad organizational trends are available,
you get some idea of the scope of such an effort.

The caveat suggested by the authors is well worth heeding, but the benefits of mea-
surement are so compelling that the hard work is worth it.

22.4.1 Arguments for Software Metrics

Why is it so important to measure the process of software engineering and the prod-
uct (software) that it produces? The answer is relatively obvious. If we do not mea-
sure, there is no real way of determining whether we are improving. And if we are
not improving, we are lost.

By requesting and evaluating productivity and quality measures, a software team
(and their management) can establish meaningful goals for improvement of the soft-
ware process. In Chapter 1 we noted that software is a strategic business issue for
many companies. If the process through which it is developed can be improved, a di-
rect impact on the bottom line can result. But to establish goals for improvement, the
current status of software development must be understood. Hence, measurement
is used to establish a process baseline from which improvements can be assessed.

-manage things by the numbers in many aspects of our lives .. . These numbers give us insight and help steer g
actions.” L e

The day-to-day rigors of software project work leave little time for strategic think-
ing. Software project managers are concerned with more mundane (but equally
important) issues: developing meaningful project estimates, producing higher-quality
systems, getting product out the door on time. By using measurement to establish a
project baseline, each of these issues becomes more manageable. We have already
noted that the baseline serves as a basis for estimation. Additionally, the collection of
quality metrics enables an organization to “tune” its software process to remove the
“vital few” causes of defecls that have the greatest impact on software development.°

22.4.2 Establishing a Baseline

By establishing a metrics baseline, benefits can be obtained at the process, project,
and product (technical) levels. Yet the information that is collected need not be fun-
damentally different. The same metrics can serve many masters. The metrics base-
line consists of data collected from past software development projects and can be
as simple as the table presented in Figure 22.2 or as complex as a comprehensive
database containing dozens of project measures and the metrics derived from them.

10 These ideas have been formalized into an approach called statistical software quality assurance and
are discussed in detail in Chapter 26.

666

PART FOUR MANAGING SOFTWARE PROJECTS

Software
metrics collec-
tion process

S
Ve,
POINT
Baseline metrics data
should be collected
from a large
representafive
sampling of past
software projecs.

Software
engineering
process -

Data |

collection \Measures

Metrics ——

computation \Metrics

Metrics p——
evaluation Indicators

To be an effective aid in process improvement and/or cost and effort estimation,
baseline data must have the following attributes: (1) data must be reasonably
accurate—"guestimates” about past projects are to be avoided; (2) data should be
collected for as many projects as possible; (3) measures must be consistent, for ex-
ample, a line of code must be interpreted consistently across all projects for which
data are collected; (4) applications should be similar to work that is to be estimated—
it makes little sense to use a baseline for batch information systems work to estimate
a real-time, embedded application.

22.4.3 Metrics Collection, Computation, and Evaluation

The process for establishing a metrics baseline is illustrated in Figure 22.3. Ideally,
data needed to establish a baseline has been collected in an on-going manner. Sadly,
this is rarely the case. Therefore, data collection requires a historical investigation of
past projects to reconstruct required data. Once measures have been collected (un-
questionably the most difficult step), metrics computation is possible. Depending on
the breadth of measures collected, metrics can span a broad range of application-
oriented metrics (e.g., LOC, FP, object-oriented, WebApp) as well as other quality-
and project-oriented metrics. Finally, metrics should be evaluated and applied dur-
ing estimation, technical work, project control, and process improvement. Metrics
evaluation focuses on the underlying reasons for the results obtained and produces
a set of indicators that guide the project or process.

The vast majority of software development organizations have fewer than 20 soft-
ware people. It is unreasonable, and in most cases unrealistic, to expect that such
organizations will develop comprehensive software metrics programs. However, it

Gpwc:‘

If you're just starting to
collect metrics data,
remember to keep it
simple. If you bury
yourself with data, your
metrics effort will foil.

; How should
" we derive a
set of “simple”
software metrics?

CHAPTER 22 METRICS FOR PROCESS AND PROJECTS 667

is reasonable to suggest that software organizations of all sizes measure and then
use the resultant metrics to help improve their local software process and the qual-
ity and timeliness of the products they produce.

A common-sense approach to the implementation of any software process re-
lated activity is: keep it simple, customize to meet local needs, and be sure it adds
value. In the paragraphs that follow, we examine how these guidelines relate to met-
rics for small shops.!!

“Keep it simple” is a guideline that works reasonably well in many activities.
But how do we derive a “simple” set of software metrics that still provides value,
and how can we be sure that these simple metrics will meet the needs of a partic-
ular software organization? We begin by focusing not on measurement but rather
on results. The software group is polled to define a single objective that requires
improvement. For example, “reduce the time to evaluate and implement change
requests.” A small organization might select the following set of easily collected
measures:

e Time (hours or days) elapsed from the time a request is made until evaluation
is complete, tycue-

e Effort (person-hours) to perform the evaluation, W,,,;.

e Time (hours or days) elapsed from completion of evaluation to assignment of
change order to personnel, fe,q.

o Effort (person-hours) required to make the change, Wange-
e Time required (hours or days) to make the change, tongnge.
e Errors uncovered during work to make the change, Epange-

e Defects uncovered after change is released to the customer base, D pange.

Once these measures have been collected for a number of change requests, it is pos-
sible to compute the average total elapsed time from change réquest to implemen-
tation of the change and the percentage of elapsed time absorbed by initial queuing,
evaluation and change assignment, and change implementation. Similarly, the per-
centage of effort required for evaluation and implementation can be determined.
These metrics can be assessed in the context of quality data, Egange and Depange. The
percentages provide insight into where the change request process slows down and
may lead to process improvement steps to reduce tqueuer Wevats tevat, Wenange, @nd/or
Epange- In addition, the defect removal efficiency can be computed as

DRE = Echunge/ (Echange + Dchange)

DRE can be compared to elapsed time and total effort to determine the impact of
quality assurance activities on the time and effort required to make a change.

11 This discussion is equally relevant to software teams that have adopted an agile software develop-
ment process (Chapter 4)

668

A Guidehook for Gool
Driven Softwore
Measroment con be
downloaded from:
www.sel.onv.edu.

7
o,
POINT
The software mefrics
you choose should be
driven by the business
and technical goals
you wish fo
accomplish.

PART FOUR MANAGING SOFTWARE PROJECTS

The Software Engineering Institute has developed a comprehensive guidebook
[PARI6] for establishing a “goal-driven” software metrics program. The guidebook
suggests the following steps:

Identify your business goals.

Identify what you want to know or learn.

Identify your subgoals.

Identify the entities and attributes related to your subgoals.

Formalize your measurement goals.

AN U 5 O

Identify quantifiable questions and the related indicators that you will use to
help you achieve your measurement goals.

7. ldentify the data elements that you will collect to construct the indicators that
help answer your questions.

8. Define the measures to be used, and make these definitions operational.
9. Identify the actions that you will take to implement the measures.
10. Prepare a plan for implementing the measures.
A detailed discussion of these steps is best left to the SEl's guidebook. However, a
brief overview of key points is worthwhile.

Because software supports business functions, differentiates computer-based
systems or products, or acts as a product in itself, goals defined for the business can
almost always be traced downward to specific goals at the software engineering
level. For example, consider a company that makes advanced home security systems

which have substantial software content. Working as a team, software engineering
and business managers can develop a list of prioritized business goals:

Improve our customers’ satisfaction with our products.
Make our products easier to use.
Reduce the time it takes us to get a new product to market.

Make support for our products easier.

o & ¥ N =

Improve our overall profitability.

The software organization examines each business goal and asks: What activities
do we manage or execute, and what do we want to improve within these activities?
To answer these questions the SEI recommends the creation of an “entity-question
list” in which all things (entities) within the software process that are managed or in-
fluenced by the software organization are noted. Examples of entities include devel-
opment resources, work products, source code, test cases, change requests,
software engineering tasks, and schedules. For each entity listed, software people

CHAPTER 22 METRICS FOR PROCESS AND PROJECTS 669

develop a set of questions that assess quantitative characteristics of the entity (e.g.,
size, cost, time to develop). The questions derived as a consequence of the creation
of an entity-question list lead to the derivation of a set of subgoals that relate directly
to the entities created and the activities performed as part of the software process.

Consider the fourth goal: “Make support for our products easier.” The following
list of questions might be derived for this goal [PAR96]:

¢ Do customer change requests contain the information we require to
adequately evaluate the change and then implement it in a timely manner?

e How large is the change request backlog?
e Is our response time for fixing bugs acceptable, based on customer need?
e Is our change control process (Chapter 27) followed?

e Are high-priority changes implemented in a timely manner?

Based on these questions, the software organization can derive the following sub-
goal: Improve the performance of the change management process. The software
process entities and attributes that are relevant to the subgoal are identified, and
measurement goals associated with them are delineated.

The SEI [PAR96] provides detailed guidance for steps 6 through 10 of its goal-
driven measurement approach. In essence, a process of stepwise refinement is ap-
plied in which goals are refined into questions that are further refined into entities
and attributes that are then refined into metrics.

.

Questions to be answered are defined; e.g., how
many errors found in one framework activity can
be traced to the preceding framework activity?

Create measures and metrics to be collected and

W Establishing a Metrics Program
The Software Productivity Center (www.spc.ca)
suggests an eight-step approach for

establishing a mefrics program within a software

organization that can be used as an alternative to the SEI

approach described in Section 22.6. Their approach is computed.
summarized in this sidebar. Identify the measures and metrics to be collected and
computed.

1. Understand the existing software process.
Framework activities (Chapter 2) are identified.
Input information for each activity is described.
Tasks associated with each activity are defined.
Quality assurance functions are noted.
Work products that are produced are listed.

2. Define the goals to be achieved by establishing a

metrics program.
Examples: improve accuracy of estimation,
improve product quality.
\ 3. Identify mefrics required to achieve goals.

Establish a measurement collection process by
answering these questions:

What is the source of the measurements2

Can tools be used to collect the data?

Who is responsible for collecting the data?

When are data collected and recorded?

How are data stored?

What validation mechanisms are used to ensure

that the data are correct?

Acquire appropriate fools to assist in collection and
assessment. /

670 PART FOUR MANAGING SOFTWARE PROJECTS

N

7. Establish a metrics database. How is the information to be delivered?
The relative sophistication of the database is What is the format of the information?
established. L .
Use of related tools fe.g., a SCM repository, A considerably more detailed description of these eight
Chapter 27) is explored. steps can be downloaded from: htp:/ /www.spc.ca/
resources/metrics/.

Existing database products are evaluated.
8. Define appropriate feedback mechanisms.

\ Who requires on-going metrics information2 J

Measurement enables managers and practitioners to improve the software process;
assist in the planning, tracking, and control of a software project; and assess the qual-
ity of the product (software) that is produced. Measures of specific attributes of the
process, project, and product are used to compute software metrics. These metrics can
be analyzed to provide indicators that guide management and technical actions.

Process metrics enable an organization to take a strategic view by providing in-
sight into the effectiveness of a software process. Project metrics are tactical. They
enable a project manager to adapt project workflow and a technical approach in a
real-time manner.

Both size- and function-oriented metrics are used throughout the industry. Size-
oriented metrics use the line of code as a normalizing factor for other measures such
as person-months or defects. The function point is derived from measures of the
information domain and a subjective assessment of problem complexity. In addition,
object-oriented metrics and Web application metrics can be used.

Software quality metrics, like productivity metrics, focus on the process, the proj-
ect, and the product. By developing and analyzing a metrics baseline for quality, an
organization can correct those areas of the software process that are the cause of
software defects.

Measurement results in cultural change. Data collection, metrics computation,
and metrics analysis are the three steps that must be implemented to begin a met-
rics program. In general, a goal-driven approach helps an organization focus on the
right metrics for its business. By creating a metrics baseline—a database containing
process and product measurements—software engineers and their managers can
gain better insight into the work that they do and the product that they produce.

[ALB83] Albrecht, A. J., and J. E. Gaffney, “Software Function, Source Lines of Code and Devel-
opment Effort Prediction: A Software Science Validation,” IEEE Trans. Software Engineering,
November 1983, pp. 639-648.

[BOE81] Boehm, B., Software Engineering Economics, Prentice-Hall, 1981.

CHAPTER 22 METRICS FOR PROCESS AND PROJECTS 671

[GRA87] Grady, R. B., and D. L. Caswell, Software Metrics: Establishing a Company-Wide Program,
Prentice-Hall, 1987.

[GRA92] Grady, R. G., Practical Software Metrics for Project Management and Process Improvement,
Prentice-Hall, 1992.

[GIL88] Gilb, T., Principles of Software Project Management, Addison-Wesley, 1988.

[HET93] Hetzel, W., Making Software Measurement Work, QED Publishing Group, 1993.

[HUM95] Humphrey, W., A Discipline for Software Engineering, Addison-Wesley, 1995.

[IEE93] IEEE Software Engineering Standards, Standard 610.12-1990, pp. 47-48.

[JON86] Jones, C., Programming Productivity, McGraw-Hill, 1986.

UON91] Jones, C., Applied Software Measurement, McGraw-Hill, 1991.

[JON98] Jones, C., Estimating Software Costs, McGraw-Hill, 1998.

[LOR94] Lorenz, M., and J. Kidd, Object-Oriented Software Metrics, Prentice-Hall, 1994.

[PAR96] Park, R. E., W. B. Goethert, and W. A. Florac, Goal Driven Software Measurement—A
Guidebook, CMU/SEI-96-BH-002, Software Engineering Institute, Carnegie Mellon Univer-
sity, August 1996.

[PAU94] Paulish, D., and A. Carleton, “Case Studies of Software Process Improvement Measure-
ment,” Computer, vol. 27, no. 9, September 1994, pp. 50-57.

[QSMO2] “QSM Function Point Language Gearing Factors,” Version 2.0, Quantitative Software
Management, 2002, http://www.gsm.com/FPGearing.html.

[RAGY5] Ragland, B., “Measure, Metric or Indicator: What's the Difference?” Crosstalk, vol. 8, no.
3, March 1995, p. 29-30.

[SMI99] Smith, J., “The Estimation of Effort Based on Use-Cases,” a white paper by Rational Cor-
poration, 1999, downloaded from http://www.rational.com/products/rup/whitepapers jsp.

22.1. Using the table presented in Section 22.2.3, make an argument against the use of as-
sembler language based on the functionality delivered per statement of code. Again referring to
the table, discuss why C++ would present a better alternative than C.

22.2. Why should some software metrics be kept “private”? Provide examples of three metrics
that should be private. Provide examples of three metrics that should be public.

22.3. Describe the difference between process and project metrics in your own words.

22.4. Compute the function point value for a project with the following information domain
characteristics:

Number of external inputs: 32
Number of external outputs: 60
Number of external inquiries: 24
Number of internal logical files: 8
Number of external interface files: 2

Assume that all complexity adjustment values are average. Use the algorithm noted in Chapter 15.

22.5. Present an argument against lines of code as a measure for software productivity. Will
your case hold up when dozens or hundreds of projects are considered?

22.6. Team A found 342 errors during the software engineering process prior to release. Team
B found 184 errors. What additional measures would have to be made for projects A and B to
determine which of the teams eliminated errors more efficiently? What metrics would you pro-
pose to help in making the determination? What historical data might be useful?

22.7. Grady suggests an etiquette for software metrics. Can you add three more rules to those
noted in Section 22.1.1?

22.8. What is an indirect measure, and why are such measures common in software metrics
work?

672

PART FOUR MANAGING SOFTWARE PROJECTS

22.9. A software increment is delivered to end-users by a software team. The users uncover 8
defects during the first month of use. Prior to delivery, the software team found 242 errors dur-
ing formal technical reviews and all testing tasks. What is the overall DRE for the project?

22.10. A Web engineering team has buiit a e-commerce WebApp that contains 145 individual
pages. Of these pages, 65 are dynamic; i.e., they are internally generated based on end-user in-
put. What is the customization index for this application?

22.11. The software used to control a photocopier requires 32,000 of C and 4200 lines of
Smalltalk. Estimate the number of function points for the software inside the copier.

22.12. At the conclusion of a project that used the Unified Process (Chapter 3), it has been de-
termined that 30 errors were found during the elaboration phase and 12 errors were found dur-
ing construction phase that were traceable to errors that were not discovered in the elaboration
phase. What is the DRE for these two phases?

22.13. A WebApp and its support environment has not been fully fortified against attack. Web
engineers estimate that the likelihood of repelling an attack is only 30 percent. The system does
not contain sensitive or controversial information, so the threat probability is 25 percent. What
is the integrity of the WebApp?

Software process improvement (SPI) has received a significant amount of attention over the past
two decades. Since measurement and software metrics are key to successfully improving the
software process, many books on SPI also discuss metrics. Worthwhile sources of information
on process metrics include:

Burr, A., and M. Owen, Statistical Mcthods for Software Quality, International Thomson Pub-
lishing, 1996.

El Emam, K., and N. Madhavji (eds.), Elements of Software Process Assessment and Improve-
ment, IEEE Computer Society, 1999.

Florac, W. A., and A. D. Carleton, Measuring the Softwate Process: Statistical Process Control
for Software Process Improvement, Addison-Wesley, 1999.

Garmus, D., and D. Herron, Measuring the Software Process: A Practical Guide to Functional
Measurements, Prentice-Hall, 1996.

Humphrey, W., Introduction to the Team Software Process, Addison-Wesley/Longman, 2000.
Kan, S. H., Metrics and Modcls in Software Quality Engineering, Addison-Wesley, 1995.

McGarry and his colleagues (Practical Software Measurement, Addison-Wesley, 2001) present in-
depth advice for assessing the software process. A worthwhile collection of papers has been ed-
ited by Haug and his colleagues (Software Process Improvement: Meltrics, Measurement, and
Process Modeling, Springer-Verlag, 2001). Florac and Carlton (Measuring the Software Process,
Addison-Wesley, 1999) and Fenton and Pfleeger (Software Metrics: A Rigorous and Practical Ap-
proach, Revised, Brooks/Cole Publishers, 1998) discuss how software metrics can be used to
provide the indicators necessary to improve the software process.

Putnam and Myers (Five Core Metrics, Dorset House, 2003) draw on a database of more the
6000 software projects to demonstrate how five core metrics—time, effort, size, reliability, and
process productivity-——can be used to control software projects. Maxwell (Applied Statistics for
Software Managers, Prentice-Hall, 2003) presents techniques for analyzing software project
data. Munson (Software Engineering Measurement, Auerbach, 2003) discusses a broad array of
software engineering measurement issues. Jones (Software Assessments, Benchmarks and Best
Practices, Addison-Wesley, 2000) describes both quantitative measurement and qualitative fac-
tors that help an organization assess its software process and practices. Garmus and Herron
(Function Point Analysis: Measurement Practices for Successful Software Projects, Addison-Wesley,
2000) discuss process metrics with an emphasis on function point analysis.

CHAPTER 22 METRICS FOR PROCESS AND PROJECTS 673

Lorenze and Kidd [LOR94] and DeChampeax (Object-Oriented Development Process and Met-
rics, Prentice-Hall, 1996) consider the OO process and describe a set of metrics for assessing it.
Whitmire (Object-Oriented Design Measurement, Wiley, 1997) and Henderson-Sellers (Object-
Oriented Metrics: Measures of Complexity, Prentice-Hall, 1995) focus on technical metrics for OO
work, but also consider measures and metrics that can be used at the process and product level.

Relatively little has been published on metrics for Web engineering work. However, Stern
(Web Metrics: Proven Methods for Measuring Web Site Success, Wiley, 2002), Inan and Kean (Mea-
suring the Success of Your Website, Longman, 2002), and Nobles and Grady (Web Site Analysis and
Reporting, Premier Press, 2001) address Web metrics from a business and marketing perspective.

The latest research in the metrics area is summarized by the IEEE (Symposium on Software
Metrics, published yearly). A wide variety of information sources on the process and project met-
rics is available on the Internet. An up-to-date list of World Wide Web references can be found
at the SEPA Web site:
http://www.mhhe.com/pressman.

|

ESTIMATION

KEey oftware project management begins with a set of activities that are collec-
CONCEPTS tively called project planning. Before the project can begin, the project man-
complexity ager and the software team must estimate the work to-be done, the
estimation resources that will be required, and the time that w11] elapse "from start to finish.
concepts Once these activities are accomplished, the SW establish a proj-
FP-based ect schedule that defines software engmeenng tasks and milestones, identifies
who is responsible for conducting each task, and specff‘ ies the-inter-task depend-
L0C-based encies that may have a stfong bearing on progress.
process-based In an excellent guide to “software project survival,” Steve McConnell [MCC98]
recondiliation presents a real-world view of project planning: -
veeraases Many technical workers would rather do technical work than spend time planning.
foasibity Many technical managers do not have sufficient training in technical management to
project plaaning feel confident that their planning will improve a project’s outcome. Since neither party
Tesovrcos wants to do planning, it often doesn't get done.
scope But failure to plan is one of the most critical mistakes a project can make . . . effective
software sizing planning is needed to resolve problems upstream [early in the project] at low cost,

rather than downstream {late in the project] at high cost. The average project spends
80 percent of its time on rework—fixing mistakes that were made earlier in the project.

McConnell argues that every project can find the time to plan (and to adapt the plan
throughout the project) simply by taking a small percentage of the time that would
have been spent on rework that occurs because planning was not conducted.

does ll‘? Sof!wure project managers—

formation solicited from stakeholders
We mnm and software mefrics

sources, and fime it will fal

software-based system or

674

CHAPTER 23 ESTIMATION 675

‘we done it right?
t really know until
ted. However, if you
a systematic ap-
ssing solid histoncal
nts using at least
ish cf;‘;enhshc
as the project
'conﬁdmf that

tions fo Be tmplemented” andthe
time involved for each is generated.

Planning requires technical managers and members of the software team to make
an initial commitment, even though it's likely that this “commitment” will be proven
wrong. Whenever estimates are made, we look into the future and accept some de-

gree of uncertainty as a matter of course. To quote Frederick Brooks [BRO75]:

[Olur techniques of estimating are poorly developed. More seriously, they reflect an un-
voiced assumption that is quite untrue, i.e., that all will go well . . . Because we are un-
certain of our estimates, software managers often lack the courteous stubbornness to
make people wait for a good product.

Although estimating is as much art as it is science, this important activity need not
be conducted in a haphazard manner. Useful techniques for time and effort estima-
tion do exist. Process and project metrics can provide historical perspective and
powerful input for the generation of quantitative estimates. Past experience (of all
people involved) can aid immeasurably as estimates are developed and reviewed.
Because estimation lays a foundation for all other project planning activities, and

project planning provides the road map for successful software engineering, we
would be ill-advised to embark without it.

“Good estimating approaches and solid historical data offer the best hope that reality will win out over impossible
demands.” :

Estimation of resources, cost, and schedule for a software engineering effort re-
quires experience, access to good historical information (metrics), and the courage

to commltT’“quant;ta_tlve predictions when qualitative information is all that exists.
Estimation carries inherent risk!, and this risk leads to uncertainty.

I Systematic techniques for risk analysis are presented in Chapter 25.

676 PART FOUR MANAGING SOFTWARE PROJECTS

The availability of historical information has a strong influence on estimation risk.
By looking back, we can emulate things that worked and improve areas where prob-
lems arose. When comprehensive software metrics (Chapter 22) are available for
past projects, estimates can be made with greater assurance, schedules can be es-
tablished to avoid past difficulties, and overall risk is reduced.

: mmmmmmdwnhthedegmofpmmmhm“
P mMonlyunnpproxmmmnohhemhsM

Estimation risk is measured by the degree of uncertainty in the quantitative estimates
established for resources, cost, and schedule. If project scope is poorly understood or
project requirements are subject to change, uncertainty and estimation risk become
dangerously high. The planner, and more importantly, the customer should recognize
that variability in software requirements means instability in cost and schedule.

However, a project manager should not become obsessive about estimation.
Modern software engiﬁeering approaches (e.g., incremental process models) take an
iterative view of development. In such approaches, it is possible—although not al-
ways politically acceptable—to revisit the estimate (as more information is known)
and revise it when the customer makes changes to requirements.

e The objective of software project planning is to provide a framework that enables the
ADWCE’ manager to make reasonable estimates of resources, cost, and schedule. In addition,
The more you know, estimates should attempt to define best-case and worst-case scenarios so that proj-
fhébeﬁef you ect outcomes can be bounded. Although there is an inherent degree of uncertainty,
esfime. ﬂ'e’e{”"‘" the software team embarks on a plan that has been established as a consequence of
update your estimates . .

as the project planning tasks. Therefore, the plan must be adapted and updated as the project pro-
progresses. ceeds. In the following sections, each of the activities associated with software proj-

ect planning is discussed.

Task Set for Project Planning

1. Establish project scope
2. Determine feasibility
3. Analyze risks (Chapter 25)
4. Define required resources
a. Defermine human resources required
b. Define reusable software resources
c. Identify environmental resources

C, Estimate cost and effort

a. Decompose the problem

b. Develop two or more estimates using size,
function points, process tasks, or use-cases

c. Reconcile the estimates

Develop a project schedule (Chapter 24)

a. Establish a meaningful task set

b. Define a task network

c. Use scheduling tools to develop a timeline chart

d. Define schedule tracking mechanisms

CHAPTER 23 ESTIMATION 677

P
o,

POINT
Although there are
many reasons for
uncertainty, incomplete
information about
problem requirements
dominates.

Gpwc:‘

Project feasibility is
important, but o
consideration of
business need is even
more important. It
does no good fo build
0 hightech system or
product that no one
wants.

Software scope describes the functions and features that are to be delivered to end-
users, the data that are input and output, the “content” that is presented to users as
a consequence of using the software, and the performance, constraints, interfaces,
and reliability that bound the system. Scope is defined using one of two techniques:

1. A narrative description of software scope is developed after communication
with all stakeholders.

2. A setof use-cases? is developed by end-users.

Functions described in the statement of scope (or within the use-cases) are evalu-
ated and in some cases refined to provide more detail prior to the beginning of esti-
mation. Because both cost and schedule estimates are functionally oriented, some
degree of decomposition is often useful. Performance considerations encompass
processing and response time requirements. Constraints identify limits placed on the
software by external hardware, available memory, or other existing systems.

Once scope has been identified (with the concurrence of the customer), it is rea-
sonable to ask: Can we build software to meet this scope? Is the project feasible? All
too often, software engineers rush past these questions (or are pushed past them by
impatient managers or customers), only to become mired in a project that is doomed
from the onset. Putnam and Myers [PUT97a] address this issue when they write:

[N]ot everything imaginable is feasible, not even in software, evanescent as it may appear
to outsiders. On the contrary, software feasibility has four solid dimensions: Technology—
Is a project technically feasible? Is it within the state of the art? Can defects be reduced to
a level matching the application’s needs? Finance—Is it financially feasible? Can devel-
opment be completed at a cost the software organization, its client, or the market can af-
ford? Time—Will the project’s time-to-market beat the competition? Resources—Does the
organization have the resources needed to succeed?

Putnam and Myers correctly suggest that scoping is not enough. Once scope is un-
derstood, the software team and others must work to determine if it can be done
within the dimensions just noted. This is a crucial, although often overlooked, part
of the estimation process.

The second planning task is estimation of the resources required to accomplish the
software development effort. Figure 23.1 depicts the three major categories of soft-
ware engineering resources—people, reusable software components, and the devel-
opment environment (hardware and software tools). Each resource is specified with

2 Use-cases have been discussed in detail throughout Parts 2 and 3 of this book. A use-case is a
scenario-based description of the user’s interaction with the software from the user's point of view.

678

PART FOUR MANAGING SOFTWARE PROJECTS

Project
resources

Hardware

Network
resources

Reusable
software

orTs

components

New
components

Full-experience
components

Part-experience
components

four characteristics: description of the resource; a statement of availability; time
when the resource will be required; duration of time that resource will be applied.
The last two characteristics can be viewed as a time window. Availability of the re-
source for a specified window must be established at the earliest practical time.

23.4.1 Human Resources

The planner begins by evaluating software scope and selecting the skills required to
complete development. Both organizational position (e.g., manager, senior software
engineer) and specialty (e.g., telecommunications, database, client/server) are spec-
ified. For relatively small projects (a few person-months), a single individual may
perform all software engineering tasks, consulting with specialists as required. For
larger projects, the software team may be geographically dispersed across a number
of different locations. Hence, the location of each human resource is specified.

The number of people required for a software project can be determined only af-
ter an estimate of development effort (e.g., person-months) is made. Techniques for
estimating effort are discussed later in this chapter.

23.4.2 Reusable Software Resources

Component-based software engineering (Chapter 30) emphasizes reusability—that
is, the creation and reuse of software building blocks [HOO91]. Such building blocks,
often called components, must be cataloged for easy reference, standardized for easy
application, and validated for easy integration.

Gpwcss

Never forget that inte-
grating a variety of
reusable components
con be a significant
challenge. The infegre-
tion problem often
resurfaces as various
components are
upgraded.

CHAPTER 23 ESTIMATION 679

Bennatan [BEN92] suggests four software resource categories that should be con-
sidered as planning proceeds:

Off-the-shelf components. Existing software can be acquired from a third party or
has been developed internally for a past project. COTS (commercial off-the-shelf)
components are purchased from a third party, are ready for use on the current
project, and have been fully validated.

Full-experience components. Existing specifications, designs, code, or test data
developed for past projects are similar to the software to be built for the current
project. Members of the current software team have had full experience in the ap-
plication area represented by these components. Therefore, modifications required
for full-experience components will be relatively low-risk.

Partial-experience components. Existing specifications, designs, code, or test data
developed for past projects are related to the software to be built for the current
project but will require substantial modification. Members of the current software
team have only limited experience in the application area represented by these
components. Therefore, modifications required for partial-experience components
have a fair degree of risk.

New components. Software components must be built by the software team
specifically for the needs of the current project.

Ironically, reusable software components are often neglected during planning, only
to become a paramount concern during the development phase of the software
process. It is better to specify software resource requirements early. In this way
technical evaluation of the alternatives can be conducted and timely acquisition
can occur.

23.4.3 Environmental Resources

The environment that supports a software project, often called the software engi-
neering environment (SEE), incorporates hardware and software. Hardware provides
a platform that supports the tools (software) required to produce the work products
that are an outcome of good software engineering practice.® Because most software
organizations have multiple constituencies that require access to the SEE, a project
planner must prescribe the time window required for hardware and software and
verify that these resources will be available.

When a computer-based system (incorporating specialized hardware and software)
is to be engineered, the software team may require access to hardware elements be-
ing developed by other engineering teams. For example, software for a numerical con-
trol (NC) used on a class of machine tools may require a specific machine tool (e.g.,an

3 Other hardware—the target environment—is the computer(s) on which the software will execute
when it has been released to the end-user.

680 PART FOUR MANAGING SOFTWARE PROJECTS

NC lathe) as part of the validation test step; a software project for advanced page-
layout may need a high-quality printer at some point during development. Each hard-
ware element must be specified by the software project planner.

Software is the most expensive element of virtually all computer-based systems. For
complex, custom systems, a large cost estimation error can make the difference be-
tween profit and loss. Cost overrun can be disastrous for the developer.

and incroased compeition, fhe abilty 10 estimate more accwuloly . ;|
any [T groups.”

e Software cost and effort estimation will never be an exact science.* Too many
variables—human, technical, environmental, political-—can affect the ultimate cost

Alrh?ugh'soﬁvf/fare. of software and effort applied to develop it. However, software project estimation

32%7:;’)’,"3[:’"90;1,'2;’ can be transformed from a black art to a series of systematic steps that provide esti-

project cost i’ mates with acceptable risk. To achieve reliable cost and effort estimates, a number

important to remember Of options arise:

that other costs (e.g.,

development enviror- 1. Delay estimation until late in the project (obviously, we can achieve 100 per-

ment and fools, travel, cent accurate estimates after the project is complete?).

haning ofce spac, 2. Base estimates on similar projects that have already been completed.
hardware) must also

be considered. 3. Use relatively simple decomposition techniques to generate project cost and

effort estimates.

4. Use one or more empirical models for software cost and effort estimation.

Unfortunately, the first option, however attractive, is not practical. Cost estimates
must be provided “up front.” However, we should recognize that the longer we wait,
the more we know, and the more we know, the less likely we are to make serious er-
rors in our estimates.

The second option can work reasonably well, if the current project is quite simi-
lar to past efforts and other project influences (e.g., the software team, the customer,
business conditions, the SEE, deadlines) are roughly equivalent. Unfortunately, past
experience has not always been a good indicator of future results.

The remaining options are viable approaches to software project estimation. Ide-
ally, the techniques noted for each option should be applied in tandem; each used as
a cross-check for the other. Decomposition techniques take a “divide and conquer”
approach to software project estimation. By decomposing a project into major func-

4 Bennatan [BENO3] reports that 40 percent of software developers continue to struggle with esti-
mation and that software size and development time are very difficult to estimate accurately.

CHAPTER 23 ESTIMATION 681

tions and related software engineering activities, cost and effort estimation can be per-
formed in a stepwise fashion. Empirical estimation models canbe used to complement
decomposition techniques and offer a potentially valuable estimation approach in
their own right. These models are discussed in Section 23.7.

Each of the viable software cost estimation options is only as good as the histor-
ical data used to seed the estimate. If no historical data exist, costing rests on a very
shaky foundation. In Chapter 22, we examined the characteristics of some of the
software metrics that provide the basis for historical estimation data.

%
POINT
The “size” of software
to be built can be
esfimated using a direct
measure, LOC, or an
indirect meosure, FP.

How do

we size the
software that
we're planning
to build?

Software project estimation is a form of problem solving, and in most cases, the prob-
lem to be solved (i.e., developing a cost and effort estimate for a software project) is too
complex to be considered in one piece. For this reason, we decompose the problem,
recharacterizing it as a set of smaller (and hopefully, more manageable) problems.

In Chapter 21, the decomposition approach was discussed from two different
points of view: decomposition of the problem and decomposition of the process. Es-
timation uses one or both forms of partitioning, But before an éstimate can be made,
the project planner must understand the scope of the software to be built and gen-
erate an estimate of its “size.”

23.6.1 Software Sizing

The accuracy of a software project estimate is predicated on a number of things:
(1) the degree to which the planner has properly estimated the size of the product to
be built; (2) the ability to translate the size estimate into human effort, calendar time,
and dollars (a function of the availability of reliable software metrics from past proj-
ects); (3) the degree to which the project plan reflects the abilities of the software
team; and (4) the stability of product requirements and the environment that sup-
ports the software engineering effort.

In this section, we consider the software sizing problem. Because a project esti-
mate is only as good as the estimate of the size of the work to be accomplished, siz-
ing represents the project planner’s first major challenge. In the context of project
planning, size refers to a quantifiable outcome of the software project. If a direct ap-
proach is taken, size can be measured in lines of code (LOC). If an indirect approach
is chosen, size is represented as function points (FP).

Putnam and Myers [PUT92] suggest four different approaches to the sizing
problem:

e “Fuzzy logic” sizing. To apply this approach, the planner must identify the type
of application, establish its magnitude on a qualitative scale, and then refine
the magnitude within the original range.

e Function point sizing. The planner develops estimates of the information
domain characteristics discussed in Chapter 15.

682

‘ What do

LOC- and FP-
based estimation
have in common?

anc:‘

When collecting
productivity metrics for
projects, be sure fo
establish o taxonomy
of project types. This
will enable you to
compute domair-
specific averages,
making estimation
more accurafe.

PART FOUR MANAGING SOFTWARE PROJECTS

e Standard component sizing. Software is composed of a number of different
“standard components” that are generic to a particular application area. For
example, the standard components for an information system are subsys-
tems, modules, screens, reports, interactive programs, batch programs, files,
LOC, and object-level instructions. The project planner estimates the number
of occurrences of each standard component and then uses historical project
data to determine the delivered size per standard component.

e Change sizing. This approach is used when a project encompasses the use of
existing software that must be modified in some way as part of a project. The
planner estimates the number and type (e.g., reuse, adding code, changing
code, deleting code) of modifications that must be accomplished.

Putnam and Myers suggest that the results of each of these sizing approaches be
combined statistically to create a three-point or expected-value estimate. This is ac-
complished by developing optimistic (low), most likely, and pessimistic (high) val-
ues for size and combining them using Equation (23-1) described in the next
section.

23.6.2 Problem-Based Estimation

In Chapter 22, lines of code and function points were described as measures from
which productivity metrics can be computed. LOC and FP data are used in two ways
during software project estimation: (1) as an estimation variable to “size” each ele-
ment of the software and (2) as baseline metrics collected from past projects and
used in conjunction with estimation variables to develop cost and effort projections.

LOC and FP estimation are distinct estimation techniques. Yet both have a num-
ber of characteristics in common. The project planner begins with a bounded state-
ment of software scope and from this statement attempts to decompose software
into problem functions that can each be estimated individually. LOC or FP (the esti-
mation variable) is then estimated for each function. Alternatively, the planner may
choose another component for sizing such as classes or objects, changes, or busi-
ness processes affected.

Baseline productivity metrics (e.g., LOC/pm or FP/pm?®) are then applied to the
appropriate estimation variable, and cost or effort for the function is derived. Func-
tion estimates are combined to produce an overall estimate for the entire project.

It is important to note, however, that there is often substantial scatter in produc-
tivity metrics for an organization, making the use of a single baseline productivity
metric suspect. In general, LOC/pm or FP/pm averages should be computed by proj-
ect domain. That is, projects should be grouped by team size, application area, com-
plexity, and other relevant parameters. Local domain averages should then be
computed. When a new project is estimated, it should first be allocated to a domain,

5 The acronym pm means person-month of effort.

0
%,
POINT
For FP estimates,
decomposition focuses

on information domain
characteristics.

7y How do we
' compute the
“expected valve”
for software
size?

CHAPTER 23 ESTIMATION 683

and then the appropriate domain average for productivity should be used in gener-
ating the estimate.

The LOC and FP estimation techniques differ in the level of detail required for de-
composition and the target of the partitioning. When LOC is used as the estimation
variable, decomposition is absolutely essential and is often taken to considerable
levels of detail. The greater the degree of partitioning, the more likely reasonably ac-
curate estimates of LOC can be developed.

For FP estimates, decomposition works differently. Rather than focusing on func-
tion, each of the five information dorain characteristics as well as the 14 complex-
ity adjustment values discussed in Chapter 15 are estimated. The resultant estimates
can then be used to derive a FP value that can be tied to past data and used to gen-
erate an estimate.

Regardless of the estimation variable that is used, the project planner begins by
estimating a range of values for each function or information domain value. Using
historical data or (when all else fails) intuition, the planner estimates an optimistic,
most likely, and pessimistic size value for each function or count for each informa-
tion domain value. An implicit indication of the degree of uncertainty is provided
when a range of values is specified.

A three-point or expected-value can then be computed. The expected-value for the
estimation variable (size), S, can be computed as a weighted average of the opti-
mistic {Sop), most likely (s}, and pessimistic (spess) €stimates. For example,

S= (Sopl + 4Sm + Spess)/6 (23-1)

gives heaviest credence to the “most likely” estimate and follows a beta probability
distribution. We assume that there is a very small probability the actual size result
will fall outside the optimistic or pessimistic values.

Once the expected value for the estimation variable has been determined, histor-
ical LOC or FP productivity data are applied. Are the estimates correct? The only rea-
sonable answer to this question is: We can't be sure. Any estimation technique, no
matter how sophisticated, must be cross-checked with another approach. Even then,
common sense and experience must prevail.

23.6.3 An Example of LOC-Based Estimation

As an example of LOC and FP problem-based estimation techniques, let us consider
a software package to be developed for a computer-aided design application for me-
chanical components. The software is to execute on an engineering workstation and
must interface with various peripherals including a mouse, digitizer, high-resolution
color display, and laser printer. A preliminary statement of software scope can be de-
veloped:

The mechanical CAD software will accept two- and three-dimensional geometric data
from an engineer. The engineer will interact and control the CAD system through a user
interface that will exhibit characteristics of good human/machine interface design. All

684

ﬁpwcs’

Many modem applica-
tions reside on @
network or are part of
a client/server archi-
tecture. Therefore, be
sure that your
estimates include the
effort required to
develop “infrastruc-
fure” software.

€

Do not succumb to the
temptation fo use this
result as your project
estimate. You should
derive another result
using a different
approach.

PART FOUR MANAGING SOFTWARE PROJECTS

geometric data and other supporting information will be maintained in a CAD database.
Design analysis modules will be developed to produce the required output, which will
be displayed on a variety of graphics devices. The software will be designed to control
and interact with peripheral devices that include a mouse, digitizer, laser printer, and
plotter.

This statement of scope is preliminary—it is not bounded. Every sentence would
have to be expanded to provide concrete detail and quantitative bounding. For ex-
ample, before estimation can begin, the planner must determine what “characteris-
tics of good human/machine interface design” means or what the size and
sophistication of the “CAD database” are to be.

For our purposes, we assume that further refinement has occurred and that the
major software functions listed in Figure 23.2 are identified. Following the de-
composition technique for LOC, an estimation table, shown in Figure 23.2, is de-
veloped. A range of LOC estimates is developed for each function. For example,
the range of LOC estimates for the 3D geometric analysis function is optimistic—
4600 LOC, most likely—6900 LOC, and pessimistic—8600 LLOC. Applying Equation
{23-1), the expected value for the 3D geometric analysis function is 6800 LOC.
Other estimates are derived in a similar fashion. By summing vertically in the es-
timated LOC column, an estimate of 33,200 lines of code is established for the CAD
system.

A review of historical data indicates that the organizational average productivity
for systems of this type is 620 LOC/pm. Based on a burdened labor rate of $8,000 per
month, the cost per line of code is approximately $13. Based on the LOC estimate
and the historical productivity data, the total estimated project cost is $431,000 and
the estimated effort is 54 person-months.®

Estimation
table for the
LOC methods

Iser interface and .. 2,300 k
Two-&;menswnd geomotnc unalysns (2DGA) : 5, 300

6 Estimates are rounded to the nearest $1,000 and person month. Further precision is unnecessary
and unrealistic, given the limitation of estimation accuracy.

CHAPTER 23 ESTIMATION 685

SAFEHOME

scene: Doungl%efs office as Jamie: Whoal How oré

Miller fmamger of the SafeHome '
/bmﬁ and Vnod Raman, Jamie guesstimate the LOC count

The best approach is to h

; entire project. -
' gotto define a micro-schedule for Jamie: But that'll iaha
started.

Vinod: No . .. itcan
Okay, but we haven't defined any ~ morning, in fact. :
: Doug: | agree .. . we
ball-park idea of what the
Jamie: | think we shoukd jus
all.

Mhmberoﬂms ofcode vinod: Lets godoit. .. k

23.6.4 An Example of FP-Based Estimation

Decomposition for FP-based estimation focuses on information domain values
rather than software functions. Referring to the table presented in Figure 23.3, the
project planner estimates external inputs, external outputs, external inquiries, inter-
nal logical files, and external interface files for the CAD software. FP are computed
using the technique discussed in Chapter 15. For the purposes of this estimate, the

Estimating
information
domdain values

Number of external 'rnqcﬁrfés“’
Number of internal logieol files

686

eADWCI‘

If time permits, use
finer granularity when
specifying tasks in
Figure 23.4. For
example, break
analysis info its major
tasks and estimate
each separately.

PART FOUR MANAGING SOFTWARE PROJECTS

complexity weighting factor is assumed to be average. Figure 23.3 presents the re-
sults of this estimate.

Each of the complexity weighting factors is estimated and the value adjustment
factor is computed as described in Chapter 15:

5
c
(1]

Factor

Backup and recovery

Data communications

Distributed processing

Performance critical

Existing operating environment
Onrline data entry

Input ransaction over multiple screens

ILFs updated online

O ®NO AN =

Information domain values complex
10. Infernal processing complex

11. Code designed for reuse

12. Conversion/installation in design
13. Multiple installations

14. Application designed for change
Value adjustment factor

- hWwWh OO Lo hMNwhhONAM

A7

Finally, the estimated number of FP is derived:

FPegiimated = count-total x [0.65 + 0.01 X X (F)]
FPegtimated = 375

The organizational average productivity for systems of this type is 6.5 FP/pm. Based
on a burdened labor rate of $8,000 per month, the cost per FP is approximately
$1,230. Based on the FP estimate and the historical productivity data, the total esti-
mated project cost is $461,000 and the estimated effort is 58 person-months.

23.6.5 Process-Based Estimation

The most common technique for estimating a project is to base the estimate on the
process that will be used. That is, the process is decomposed into a relatively small
set of tasks and the effort required to accomplish each task is estimated.

Like problem-based techniques, process-based estimation begins with a delineation
of software functions obtained from the project scope. A series of framework activities
must be performed for each function. Functions and related framework activities’ may
be represented as part of a table similar to the one presented in Figure 23 .4.

7 The framework activities chosen for this project differ somewhat from the generic activities dis-
cussed in Chapter 2. They are customer communication (CC), planning, risk analysis, engineering,
and construction/release.

CHAPTER 23 ESTIMATION 687

Process-based
estimation
table

CC = customer communication CE = customer evaluation

Once problem functions and process activities are melded, the planner estimates
the effort (e.g., person-months) that will be required to accomplish each software
process activity for each software function. These data constitute the central matrix
of the table in Figure 23.4. Average labor rates (i.e., cost/unit effort) are then applied
to the effort estimated for each process activity. It is very likely the labor rate will vary
for each task. Senior staff are heavily involved in early framework activities and are
generally more expensive than junior staff involved in construction and release.

Costs and effort for each function and framework activity are computed as the last
step. If process-based estimation is performed independently of LOC or FP estima-
tion, we now have two or three estimates for cost and effort that may be compared
and reconciled. If both sets of estimates show reasonable agreement, there is good
reason to believe that the estimates are reliable. If, on the other hand, the results of
these decomposition techniques show little agreement, further investigation and
analysis must be conducted. '

uﬂaﬁmﬁﬂw background of an estimate before you use it.”

Barry Boehm and Rk

23.6.6 An Example of Process-Based Estimation

To illustrate the use of process-based estimation, we again consider the CAD soft-
ware introduced in Section 23.6.3. The system configuration and all software func-
tions remain unchanged and are indicated by project scope.

Referring to the completed process-based table shown in Figure 23 .4, estimates
of effort (in person-months) for each software engineering activity are provided for
each CAD software function (abbreviated for brevity). The engineering and con-
struction release activities are subdivided into the major software engineering tasks

688

Why is it

difficolt
to develop an
estimation
technique using
vse-cases?

PART FOUR MANAGING SOFTWARE PROJECTS

shown. Gross estimates of effort are provided for customer communication, plan-
ning, and risk analysis. These are noted in the total row at the bottom of the table.
Horizontal and vertical totals provide an indication of estimated effort required for
analysis, design, code, and test. It should be noted that 53 percent of all effort is ex-
pended on front-end engineering tasks (requirements analysis and design), indicat-
ing the relative importance of this work.

Based on an average burdened labor rate of $8,000 per month, the total estimated
project cost is $368,000, and the estimated effort is 46 person-months. If desired, la-
bor rates could be associated with each framework activity or software engineering
task and computed separately.

23.6.7 Estimation with Use-Cases

As we have noted throughout Parts 2 and 3 of this book, use-cases provide a software
team with insight into software scope and requirements. However, developing an es-
timation approach with use-cases is problematic for the following reasons [SMI99]:

e Use-cases are described using many different formats and styles—there is no
standard form.

e Use-cases represent an external view (the user’s view) of the software and
are often written at different levels of abstraction.

e Use-cases do not address the complexity of the functions and features that
are described.

e Use-cases do not describe complex behavior (e.g., interactions) that involves
many functions and features.

Unlike a LOC or a function point, one person’s “use-case” may require months of ef-
fort while another person’s use-case may be implemented in a day or two. '

Although a number of investigators have considered use-cases as an estimation
input, no proven estimation method has emerged to date. Smith [SMI99] suggests
that use-cases can be used for estimation, but only if they are considered within the
context of the “structural hierarchy” that the use-cases describe.

Smith argues that any level of this structural hierarchy can be described by no
more than 10 use-cases. Each of these use-cases would encompass no more than 30
distinct scenarios. Obviously, use-cases that describe a large system are written at a
much higher level of abstraction (and represent considerably more development ef-
fort) than use-cases that are written to describe a single subsystem. Therefore, be-
fore use-cases can be used for estimation, the level within the structural hierarchy is
established, the average length (in pages) of each use-case is determined, the type
of software (e.g., real-time, business, engineering/scientific, embedded) is defined,
and a rough architecture for the system is considered. Once these characteristics are
established, empirical data may be used to establish the estimated number of LOC or

CHAPTER 23 ESTIMATION 689

FP per use case (for each level of the hierarchy). Historical data are then used to com-
pute the effort required to develop the system.

To illustrate how this computation might be made, consider the following rela-
tionship:®

LOC estimate = N X LOCyyg + [(Sa/Sp — 1) + (Po/Pp — 1)] X LOCygjust (23-2)
where

N = actual number of use-cases

LOC,,, = historical average LOC per use-case for this type of subsystem

LOC,gust = represents an adjustment based on n percent of LOC,,, where n is
defined locally and represents the difference between this project
and “average” projects

Sa = actual scenarios per use-case

Sh = average scenarios per use-case for this type of subsystem
P, = actual pages per use-case

Py, = average pages per use-case for this type of subsystem

Expression (23-2) is used to develop a rough estimate of the number of LOC based
on the actual number of use-cases adjusted by the number of scenarios and the page
length of the use-cases. The adjustment represents up to n percent of the historical
average LOC per use case.

23.6.8 An Example of Use-Case Based Estimation

The CAD software introduced in Section 23.6.3 is composed of three subsystem
groups:

o User interface subsystem (includes UICF).

e Engineering subsystem group (includes the 2DGA subsystem, 3DGA
subsystem, and DAM subsystem).

o Infrastructure subsystem group (includes CGDF subsystem and PCF subsystem).

Six use-cases describe the user interface subsystem. Each use case is described by
no more than 10 scenarios and has an average length of six pages. The engineering
subsystem group is described by 10 use-cases (these are considered to be at a higher
level of the structural hierarchy). Each of these use-cases has no more than 20 sce-
narios associated with it and has an average length of eight pages. Finally, the infra-
structure subsystem group is described by five use-cases with an average of only six
scenarios and an average length of five pages.

8 Itis important to note that Expression (23-2) is used for illustrative purposes only. Like all estima-
tion models, it must be validated locally before it can be used with confidence.

690

Use-case
estimation

PART FOUR MANAGING SOFTWARE PROJECTS

usecases scenarios pages scenarios {pages) LOC LOC estimate
User inferface subsystem 6 10 6 12 5 560 3,366
Engineering subsystem group 10 20 8 16 8 {3100 31,233
Infrastructure subsystem group 5 6 5 10 6 §1650 7.970
Total LOC estimate ‘ - 42,568

Using the relationship noted in Expression (23-2) with n = 30 percent, the table
shown in Figure 23.5 is developed. Considering the first row of the table, historical
data indicate that Ul software requires an average of 800 LOC per use-case when the
use-case has no more than 12 scenarios and is described in less than five pages.
These data conform reasonably well for the CAD system. Hence the LOC estimate for
the user interface subsystem is computed using Expression (23-2). Using the same
approach, estimates are made for both the engineering and infrastructure subsystem
groups. Figure 23.5 summarizes the estimates and indicates that the overall size of
the CAD software is estimated at 42,500 LOC.

Using 620 LOC/pm as the average productivity for systems of this type and a bur-
dened labor rate of $8,000 per month, the cost per line of code is approximately $13.
Based on the use-case estimate and the historical productivity data, the total esti-
mated project cost is $552,000 and the estimated effort is 68 person-months.

23.6.9 Reconciling Estimates

The estimation techniques discussed in the preceding sections result in multiple es-
timates which must be reconciled to produce a single estimate of effort, project du-
ration, or cost. To illustrate this reconciliation procedure, we again consider the CAD
software introduced in Section 23.6.3.

ds might not yield o more accurate estimate, particularly when developers can incorporote .
e ~ - Philip Johns

Total estimated effort for the CAD software range from a low of 46 person-months
(derived using a process-based estimation approach) to a high of 68 person-months
(derived with use-case estimation). The average estimate (using all four approaches)
is 56 person-months. The variation from the average estimate is approximately 18
percent on the low side and 21 percent on the high side.

What happens when agreement between estimates is poor? The answer to this
question requires a reevaluation of information used to make the estimates. Widely
divergent estimates can often be traced to one of two causes:

1. The scope of the project is not adequately understood or has been misinter-
preted by the planner.

CHAPTER 23 ESTIMATION

691

2. Productivity data used for problem-based estimation techniques is inappro-
priate for the application, obsolete (in that it no longer accurately reflects the
software engineering organization), or has been misapplied.

The planner must determine the cause of divergence and then reconcile the estimates.

Automated estimation fools allow the planner
fo estimate cost and effort and to perform
“what-if” analyses for important project
variables such as delivery date or staffing. Although many
automated estimation tools exist (see sidebar later in this
chapter), all exhibit the same general characteristics, and
all perform the following six generic functions [JON96]:

1. Sizing of project deliverables. The “size” of one or
more software work products is estimated. Work
products include the external representation of
software (e.g., screens, reports), the software itself
le.g., KLOQ), functiondlity delivered (e.g., function
points), and descripfive information (e.g. documents).

2. Selecting project activities. The appropriate process
framework is selected, and the software engineering
task set is specified.

3. Predicting staffing levels. The number of people who
will be available to do the work is specified. Because
the relationship between people available and work
{predicted effort) is highly nonlinear, this is an

\ important input.

>,

4. Predicting software effort. Estimation tools use one
or more models (Section 23.7) that relate the size of
the project deliverables to the effort required to
produce them.

5. Predicting software cost. Given the results of step 4,
costs can be computed by allocating labor rates to
the project acfivities noted in step 2.

6. Predicting software schedules. When effort, staffing
level, and project activities are known, a draft
schedule can be produced by allocating labor
across software engineering activities based on
recommended models for effort distribution
discussed later in Chapter 24.

When different estimation tools are applied to the same
project data, a relatively large variation in estimated results
can be encountered. More important, predicted values
sometimes are significantly different than actual values. This
reinforces the notion that the output of estimation fools
should be used as one “data point” from which estimates
are derived—not as the only source for an estimate.

%y
e,
POINT
An estimation model
reflects the population
of projects from which
it has been derived.
Therefore, the model is
domain sensitive.

estimation model.

An estimation model for computer software uses empirically derived formulas to
predict effort as a function of LOC or FP? Values for LOC or FP are estimated using
the approach described in Sections 23.6.3 and 23.6.4. But instead of using the tables
described in those sections, the resultant values for LOC or FP are plugged into the

The empirical data that support most estimation models are derived from a lim-
ited sample of projects. For this reason, no estimation model is appropriate for all

classes of software and in all development environments. Therefore, the results ob-
tained from such models must be used judiciously.

9 An empirical model using use-cases as the independent variable is suggested in Section 23.6.7.
However, relatively few have appeared in the literature to date.

692

ennvwl‘

None of these models
should be used without
careful calibration fo
your environment.

Detailed information on
COCOMO I, induding
downloodoble
softwore, con be
obtained ot
sunset.usc.ods/

cocomoi/
cocomo_mals,

PART FOUR MANAGING SOFTWARE PROJECTS

An estimation model should be calibrated to reflect local conditions. The model
should be tested by applying data collected from completed projects, plugging the
data into the model, and then comparing actual to predicted results. If agreement is
poor, the model must be tuned and retested before it can be used.

23.7.1 The Structure of Estimation Models

A typical estimation model is derived using regression analysis on data collected from
past software projects. The overall structure of such models takes the form [MAT94]

E=A+Bx (e) (23-3)

where A, B, and C are empirically derived constants, E is effort in person-months, and
e, is the estimation variable (either LOC or FP). In addition to the relationship noted
in Equation (23-3), the majority of estimation models have some form of project ad-
justment component that enables E to be adjusted by other project characteristics
(€.g., problem complexity, staff experience, development environment). Among the
many LOC-oriented estimation models proposed in the literature are

E = 5.2 X (KLOC)®?! Walston-Felix model
E=55+0.73 x (KLOC)"'® Bailey-Basili model

E = 3.2 x (KLOC)' % Boehm simple model

E = 5.288 X (KLOC)!-%47 Doty model for KLOC > 9

FP-oriented models have also been proposed. These include

E=-914 + 0.355 FP Albrecht and Gaffney model
E=-37+096FP - Kemerer model
E = —12.88 + 0.405 FP small project regression model

A quick examination of these models indicates that each will yield a different result
for the same values of LOC or FP. The implication is clear. Estimation models must
be calibrated for local needs!

23.7.2 The COCOMO II Model

In his classic book on “software engineering economics,” Barry Boehm [BOE81] in-
troduced a hierarchy of software estimation models bearing the name COCOMO, for
COnstructive COst MOdel. The original COCOMO model became one of the most
widely used and discussed software cost estimation models in the industry. It has
evolved into a more comprehensive estimation model, called COCOMO I [BOE96,
BOEOO]. Like its predecessor, COCOMO Il is actually a hierarchy of estimation mod-
els that address the following areas:

e Application composition model. Used during the early stages of software engi-
neering, when prototyping of user interfaces, consideration of software and
system interaction, assessment of performance, and evaluation of technology
maturity are paramount.

> What is an
object point?

CHAPTER 23 ESTIMATION 693

e Early design stage model. Used once requirements have been stabilized and
basic software architecture has been established.

e Post-architecture stage model. Used during the construction of the software.

Like all estimation models for software, the COCOMO Il models require sizing infor-
mation. Three different sizing options are available as part of the model hierarchy:
object points, function points, and lines of source code.

The COCOMO 11 apptlication composition model uses object points —an indirect
software measure that is computed using counts of the number of (1) screens (at the
user interface), (2) reports, and (3) components likely to be required to build the ap-
plication. Each object instance (e.g., a screen or report) is classified into one of three
complexity levels (i.e., simple, medium, or difficult) using criteria suggested by
Boehm [BOE96]. In essence, complexity is a function of the number and source of
the client and server data tables that are required to generate the screen or report
and the number of views or sections presented as part of the screen or report.

Once complexity is determined, the number of screens, reports, and components
are weighted according to the table illustrated in Figure 23.6. The object point count
is then determined by multiplying the original number of object instances by the
weighting factor in the figure and summing to obtain a total object point count. When
component-based development or general software reuse is to be applied, the per-
cent of reuse (%reuse) is estimated and the object point count is adjusted:

NOP = (object points) x [(100 — %reuse)/100]

where NOP is defined as new object points.
To derive an estimate of effort based on the computed NOP value, a “productivity
rate” must be derived. Figure 23.7 presents the productivity rate

PROD = NOP/person-month

for different levels of developer experience and development environment maturity.
Once the productivity rate has been determined, an estimate of project effort can be
derived as

estimated effort = NOP/PROD

Complexity
weighting for
object types
[BOE96]

Object type
Screen 1 2 3
36& companent

694

PART FOUR MANAGING SOFTWARE PROJECTS

(I RN A Productivity rate for object points [BOE96]

Information on
software cost
estimation tools that
hove evolved from the
software equation can
be found at
WWW.qsm.com.

Devdop‘er's’ experiemo/cnpcbiltfy Y:;y l Low Nominal High ng
Environment maturity. /capability ““:3’ Low Nominal | High Kg}{
PROD 4 17 13 25 50

In more advanced COCOMO 11 models,'° a variety of scale factors, cost drivers,
and adjustment procedures are required. The interested reader should see [BOE0O]
or visit the COCOMO II Web site.

23.7.3 The Software Equation

The software equation [PUT92] is a multivariable model that assumes a specific dis-
tribution of effort over the life of a software development project. The model has
been derived from productivity data collected for over 4000 contemporary software
projects. Based on these data, an estimation model of the form

E = [LOC x B®333/P]® x (1/t% (23-4)
where

E = effort in person-months or person-years

t = project duration in months or years

B = “special skills factor”!

P = “productivity parameter” that reflects: overall process maturity and man-
agement practices, the extent to which good software engineering prac-
tices are used, the level of programming languages used, the state of the
software environment, the skills and experience of the software team, and
the complexity of the application.

Typical values might be P = 2000 for development of real-time embedded software;
P = 10,000 for telecommunication and systems software; P = 28,000 for business
systems applications. The productivity parameter can be derived for local conditions
using historical data collected from past development efforts.

It is important to note that the software equation has two independent parame-
ters: (1) an estimate of size (in LOC) and (2) an indication of project duration in cal-
endar months or years.

10 As noted earlier, these models use FP and KLOC counts for the size variable.

11 B increases slowly as "the need for integration, testing, quality assurance, documentation, and
management skills grows” [PUT92]. For small programs (KLOC = 5 to 15), B = 0.16. For programs
greater than 70 KLOC, B = 0.39.

CHAPTER 23 ESTIMATION 695

To simplify the estimation process and use a more common form for their esti-
mation model, Putnam and Myers [PUT92] suggest a set of equations derived from
the software equation. Minimum development time is defined as

tmin = 8.14 (LOC/P)**® in months for t,,;, > 6 months (23-5a)
E =180 Bt in person-months for E = 20 person-months (23-5b)

Note that ¢ in Equation (23-5b) is represented in years.
Using Equations (23-5) with P = 12,000 (the recommended value for scientific
software) for the CAD software discussed earlier in this chapter,

tnin = 8.14 (33200/12000)°43
tmin = 12.6 calendar months
E 180 x 0.28 x (1.05)3
E = 58 person-months

The results of the software equation correspond favorably with the estimates devel-
oped in Section 23.6. Like the COCOMO model noted in the preceding section, the
software equation has evolved over the past decade. Further discussion of an ex-
tended version of this estimation approach can be found in [PUT97b].

It is worthwhile to supplement conventional software cost estimation methods with
an approach that has been designed explicitly for OO software. Lorenz and Kidd
[LOR94] suggest the following approach:

1. Develop estimates using effort decomposition, FP analysis, and any other
method that is applicable for conventional applications.

2. Using object-oriented analysis modeling (Chapter 8), develop use-cases and
determine a count. Recognize that the number of use-cases may change as
the project progresses.

3. From the analysis model, determine the number of key classes (called analy-
sis classes in Chapter 8).

4. Categorize the type of interface for the application, and develop a multiplier
for support classes:

Interface type Multiplier

No GUI 2.0
Textbased user interface 2.25
GUl 2.5
Complex GUI 3.0

A R R VS R

696

PART FOUR MANAGING SOFTWARE PROJECTS

Multiply the number of key classes (step 3) by the multiplier to obtain an esti-
mate for the number of support classes.

5. Multiply the total number of classes (key + support) by the average number
of work-units per class. Lorenz and Kidd suggest 15 to 20 person-days per
class.

6. Cross-check the class-based estimate by multiplying the average number of
work-units per use-case.

How are

estimates
developed when
an agile process is
applied?

CovaB

In the context of
estimation for agile
projects, “volume” is
an estimate of the
overall size of a user
scenario in LOC or FP.

The estimation techniques discussed in Sections 23.6, 23.7 and 23.8 can be used for
any software project. However, when a software team encounters an extremely
short project duration (weeks rather than months) that is likely to have a continuing
stream of changes, project planning in general and estimation in particular should
be abbreviated.!? In the sections that follow, we examine two specialized estimation
techniques.

23.9.1 Estimation for Agile Development

Because the requirements for an agile project (Chapter 4) are defined as a set of user
scenarios (e.g., “stories” in Extreme Programming) it is possible to develop an esti-
mation approach that is informal, yet reasonably disciplined and meaningful within
the context of project planning for each software increment.

Estimation for agile projects uses a decomposition approach that encompasses
the following steps:

1. Each user scenario (the equivalent of a mini-use-case created at the very
start of a project by end-users or other stakeholders) is considered sepa-
rately for estimation purposes.

2. The scenario is decomposed into the set of functions and the software engi-
neering tasks that will be required to develop them.

3a. Each task is estimated separately. Note: estimation can be based on histori-
cal data, an empirical model, or “experience.”

3b. Alternatively, the “volume” (size) of the scenario can be estimated in LOC,

FP, or some other volume-oriented measure (e.g., object points).

4a. Estimates for each task are summed to create an estimate for the

scenario.

12 “Abbreviated” does not mean eliminated. Even short duration projects must be planned, and esti-
mation is the foundation of solid planning.

CHAPTER 23 ESTIMATION 697

4b. Alternatively, the volume estimate for the scenario is translated into effort
using historical data.

5. The effort estimates for all scenarios that are to be implemented for a
given software increment are summed to develop the effort estimate for
the increment.

Because the project duration required for the development of a software increment
is quite short (typically 3-6 weeks), this estimation approach serves two purposes:
(1) to ensure that the number of scenarios to be included in the increment conforms
to the available resources, and (2) to establish a basis for allocating effort as the in-
crement is developed.

23.9.2 Estimation for Web Engineering Projects

As we noted in Chapter 16, Web engineering projects often adopt the agile process
model. A modified function point measure, coupled with the steps outlined in Sec-
tion 23.9.1, can be used to develop an estimate for the WebApp.

Roetzheim [ROEOO] suggests the following information domain values when
adapting function points (Chapters 15 and 22) for WebApp estimation:

* Inputs are each input screen or form (for example, CGI or Java), each maintenance
screen, and if you use a tab notebook metaphor anywhere, each tab.

* Outputs are each static Web page, each dynamic Web page script (for example, ASP,
ISAPI, or other DHTML script), and each report (whether Web based or administrative
in nature).

* Tables are each logical table in the database plus, if you are using XML to store data in
a file, each XML object (or collection of XML attributes).

* Interfaces retain their definition as logical files (for example, unique record formats) into
our out-of-the-system boundaries.

* Queries are each externally published or use a message-oriented interface. A typical ex-
ample is DCOM or COM external references.

Function points (computed using the information domain values noted) are a rea-
sonable indicator of volume for a WebApp. _

Mendes and her colleagues [MENO1] suggest that the volume of a WebApp is best
determined by collecting measures (called “predictor variables”) associated with the
application (e.g., page count, media count, function count), its Web page character-
istics (e.g., page complexity, linking complexity, graphic complexity), media charac-
teristics (e.g., media duration), and functional characteristics (e.g., code length,
reused code length). These measures can be used to develop empirical estimation
models for total project effort, page authoring effort, media authoring effort, and
scripting effort. However, further work remains to be done before such models can
be used with confidence.

698

PART FOUR MANAGING SOFTWARE PROJECTS

-, Effort and Cost Estimation
)
\/ Objective: The objective of effort and cost

estimation tools is to provide a project team
with estimates of effort required, project duration, and cost
in a manner that addresses the specific characteristics of
the project at hand and the environment in which the
project is fo be built.

Mechanics: In general, cost estimation tools make use of
a historical database derived from local projects, data
collected across the industry, and an empirical model
{e.g., COCOMO I} that is used to derive effort, duration
and cost estimates. Characteristics of the project and the
development environment are input, and the tool provides
a range of estimation outputs.

Representative Tools'?

Costar, developed by Softstar Systems
{www.softstarsystems.com), uses the COCOMO Ii
model to develop software estimates.

Cost Xpert, developed by Cost Xpert Group, Inc.
{www.costxpert.com), integrates multiple estimation

\ models and a historical project database.

SOFTWARE TooLS

Estimate Professional, developed by the Software
Productivity Centre, Inc. (www.spc.com), is based on
COCOMO Il and the SLIM Model.

Knowledge Plan, developed by Software Productivity
Research (www.spr.com), uses function point input as
the primary driver for a complete estimation package.

Price S, developed by Price Systems
(www.pricesystems.com), is one of the oldest and most
widely used estimating tools for large-scale software
development projects.

SEER/SEM, developed by Galorath Inc.,
(www.galorath.com), provides comprehensive
estimation capability, sensitivity analysis, risk
assessment, and other features.

SLIM-Estimate, developed by QSM (www.qsm.com), draws
on comprehensive “industry knowledge bases” to
provide a “sanity check” for estimates derived using
local data.

J

—a2.10 THE MAKE/BuY DECISION

In many software application areas, it is often more cost effective to acquire rather
than develop computer software. Software engineering managers are faced with a
make/buy decision that can be further complicated by a number of acquisition op-
tions: (1) software may be purchased (or licensed) off the shelf, (2) “full-experience”
or “partial-experience” software components (see Section 23.4.2) may be acquired
and then modified and integrated to meet specific needs, or (3) software may be cus-
tom built by an outside contractor to meet the purchaser’s specifications.

The steps involved in the acquisition of software are defined by the criticality of the
software to be purchased and the end cost. In the final analysis, the make/buy deci-
sion is made based on the following conditions: (1) Will the software product be avail-
able sooner than internally developed software? (2) Will the cost of acquisition plus
the cost of customization be less than the cost of developing the software internally?
(3) Will the cost of outside support (e.g., a maintenance contract) be less than the cost
of internal support? These conditions apply for each of the acquisition options.

13 Tools noted here do not represent an endorsement, but rather a sampling of tools in this category.

In most cases, tool names are trademarked by their respective developers.

#) Is there a

'® systematic
way to sort
through the
options associated
with the make/
buy decision?

CHAPTER 23 ESTIMATION 699

23.10.1 Creating a Decision Tree

The steps just described can be augmented using statistical techniques such as de-
cision tree analysis [BOE89]. For example, Figure 23.8 depicts a decision tree for a
software-based system, X. In this case, the software engineering organization can
(1) build system X from scratch, (2) reuse existing “partial-experience” components
to construct the system, (3) buy an available software product and modify it to meet
local needs, or (4) contract the software development to an outside vendor.

If the system is to be built from scratch, there is a 70 percent probability that the
job will be difficult. Using the estimation techniques discussed earlier in this chapter,
the project planner projects that a difficult development effort will cost $450,000. A
“simple” development effort is estimated to cost $380,000. The expected value for
cost, computed along any branch of the decision tree, is

expected cost = £ (path probability), x (estimated path cost),
where i is the decision tree path. For the build path,
expected costyg = 0.30 ($380K) + 0.70 ($450K) = $429K

Following other paths of the decision tree, the projected costs for reuse, purchase
and contract, under a variety of circumstances, are also shown. The expected costs
for these paths are

expected costyeee = 0.40 ($275K) + 0.60 [0.20 ($310K) + 0.80 ($490K)] = $382K
expected COStyyy = 0.70 ($210K) + 0.30 ($400K)] = $267K
expected costepmrac = 0.60 ($350K) + 0.40 ($500K)] = $410K

A decision tree
to support the
make /buy
decision

Simple {0.30) $380,000

Difficult (0.70) $450,000

Minor changes $275,000

(0.40)

System X

ystem @ Simple (0.20) $310,000
Major
h
060) [$490,000

Complex (0.80)

Minor changes
(0.70) $210,000
400,000
. Maijor changes {0.30) $
Without changes

(0.60) $350,000
500,000
. With changes (0.40) $500,

700

PART FOUR MANAGING SOFTWARE PROJECTS

Based on the probability and projected costs that have been noted in Figure 23.8, the

lowest expected cost is the “buy” option.

It is important to note, however, that many criteria—not just cost—must be
considered during the decision-making process. Availability, experience of the
developer/vendor/contractor, conformance to requirements, local “politics,” and
the likelihood of change are but a few of the criteria that may affect the ultimate de-
cision to build, reuse, buy, or contract.

23.10.2 Outsourcing

Sooner or later, every company that develops computer software asks a fundamen-
tal question: Is there a way that we can get the software and systems we need at a
lower price? The answer to this question is not a simple one, and the emotional dis-
cussions that occur in response to the question always lead to a single word: out-
sourcing.

In concept, outsourcing is extremely simple. Software engineering activities are
contracted to a third party who does the work at lower cost and, hopefully, higher
quality. Software work conducted within a company is reduced to a contract man-
agement activity.'*

rele outsourcing requires even more skillful management than in-house development.” e

The decision to outsource can be either strategic or tactical. At the strategic level,
business managers consider whether a significant portion of all software work can
be contracted to others. At the tactical level, a project manager determines whether
part or all of a project can be best accomplished by subcontracting the software
work.

Regardiess of the breadth of focus, the outsourcing decision is often a financial
one. A detailed discussion of the financial analysis for outsourcing is beyond the
scope of this book and is best left to others (e.g., [MIN95]). However, a brief review
of the pros and cons of the decision is worthwhile.

On the positive side, cost savings can usually be achieved by reducing the num-
ber of software people and the facilities (e.g., computers, infrastructure) that support
them. On the negative side, a company loses some control over the software that it
needs. Since software is a technology that differentiates its systems, services, and
products, a company runs the risk of putting the fate of its competitiveness into the
hands of a third party.

14 Outsourcing can be viewed more generally as any activity that leads to the acquisition of software
or software components from a source outside the software engineering organization.

